skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arlot, Sylvain"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider a general formulation of the multiple change-point problem, in which the data is assumed to belong to a set equipped with a positive semidefinite kernel. We propose a model-selection penalty allowing to select the number of change points in Harchaoui and Cappe's kernel-based change-point detection method. The model-selection penalty generalizes non-asymptotic model-selection penalties for the change-in-mean problem with univariate data. We prove a non-asymptotic oracle inequality for the resulting kernel-based change-point detection method, whatever the unknown number of change points, thanks to a concentration result for Hilbert-space valued random variables which may be of independent interest. Experiments on synthetic and real data illustrate the proposed method, demonstrating its ability to detect subtle changes in the distribution of data. 
    more » « less